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ABSTRACT

This paper examines the asymptotic properties
of compromise estimators. By this we mean an
estimation method which compromises between a fin-

ite number of sampling situations in a small sam-

ple optimal way. We develop the asymptotic theory R
of such estimators and show that under a specific f:
choice of sampling situations the compromise esti- i;
mator is asymptotically robust in Huber’s sense. =7
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1. Introduction

=

A
A LN

cOntigutgl polysampling denotes a method of estimation

which is geared to small sample sizes and produces "robust” _

methods (see Pregibon and Tukey (1980)). There are important Ef;
differences. to the robustness philosophy as developed by :;;
Huber (see Huber (1964)). Since in small samples the distri- %f*
butions of estimators are quitq intractable one has to rely ;;L
on numer;cal methods in order to ,evaluate even relatively _;;
simple performance summaries like the mean-square-error. f“ﬁ
This holds true except in some simple cases -~ 1like the ‘ﬁi
Gaussian sampling model -- where a few expectations can be Ifg
evaluated in closed form. In this connection it is important 571
for the statistical community to realize that numerical Eﬁj
methods are perfectly acceptable. They do, however, 1limit ;Sﬁ
the number of sampling situations we can take into con- -<€

sideration. This in contrast to an asymptotic approach,

where for simple models an infinity of sampling situations f;:

can be considered simultaneously (Huber (1964)). _—




Pitman (1938) for example solves the small sample problem
for a single sampling situation in a location and scale set-
ting. In this paper we will show what happens if Pitman’s
method is extended to two sampling situations. And we will
address the question of the asymptotic performance of such

estimators.

An asymptotic analysis is the simplest way to 1learn )
something about the behavior of an estimator in a variety of
sampling situations. But it only gives a partial answer and

we should not forget the more important approach based on

.
P

performing "experiments® for small sample sizes. This paper,

however, will restrict attention to asymptotic discussions.

In Section 2 we will introduce the idea of compromise
estimators and discuss their optimality properties. Section

3 contains the corresponding asymptotic theory. As an exam-

e g e s . .
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Ple we define a compromise estimator which is asymptotically

!
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everywhere at least as good as Huber’s minimax estimator.

2. Configqural Estimators

2.1. Pitman’s Estimator

Let x;, X5,...,X be n observations in an i.i.d. sam- i}
pling situation from F(x - u) where 1-F(x) = F(-x) for all ~ 1
X. We also assume that F(x) ¥ 0 or 1 for any finite x and ii
furthermore that F() has density f£() with respect to Lebes- ;j
gue measure.

We restrict attention to symmetric sampling situations in
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order to avoid the issue of what "parameter” we try to esti-

mate. Symmetry of the underlying distribution allows us to
define a target, namely u = center of symmetry. Furthermore
we will not get into any discussions if later on we allow
for two =-- or many -- different sampling situations. The
center of symmetry is well defined for all symmetric shapes
which means the estimation of u is a well defined problem

for a large class of sampling situations.

The solution Pitman gives is

oo n
J ¢ HMf(x; +1)ar
Tp(Xy,eeerxy) = - 22 1';1 (2.1)
J n £(x; + r)
-0 |is=l

(see Pitman (1938)). This estimator has the smallest mean-
square-error among all location equivariant estimators.
Location equivariance is a very reasonable restriction on a

location estimator T(), it means that

'r(x1 + ErecerX, +r)s= T(xl,...,xn) + r, r<R, (2.2)

i.e. the estimator changes in the same way as the sample.

, 1
RIS

remarks: (1) The most revealing way of deriving (2.1) is
through the concept of "configurations”. By this notion we
mean the pattern of the points in our (ordered) sample and
it is easily seen that this is an ancillary statistic. The

'
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Pitman estimator tiren is chosen such that conditioned on the
configuration the estimate is unbiased. Since the condi- ;

tional variance can not be affected by the choice of the




estimate (under equivariance), this has to produce the smal-
lest mean-square-error.

(2) The conditions on £() such that (2.1) exists are dis-
cussed in Pitman (1938).

Formula (2.1) produces an estimator Tr of the center of
symmetry u no matter what the underlying sampling situation.
F It therefore need not be so that the xi‘s are sampied from
= F(x-p). -

Let us therefore introduce G(x-up) -~- again G(x) = 1 = - G(-x)
for all x°s -- as the sampling situation for Xy recesXge |
;; This is a new way of looking at the Pitman estimator T, and | ;;
it of course immediately lets us see the optimality property .

in a new light. If ¢.g. F = $ and G = Cauchy we are looking
at the behavior of the arithmetic mean under Cauchy sam-
pPling. If we are open minded about the assumptions we base
our inference on, we have to.admit that in small samples we
can not with any reasonable preci;ion know what the underly-
ing sampling situation is nor should we attempt to make
inferences about it. Huber (1964) formalizes the idea of a
robust method as a procedure which "behaves well" in the
neighborhood of a parametric model. Huber therefore would
allow G() to be chosen somewhere near F() and he modifies Tp
in such a wvay that the behavior of the new estimate |is
acceptable for all allowed G()“s. This leads us away from
considering estimates like T! which are optimized at a sin-
gle "point®. 8Since -- in small samples -- we will never be

able to tell at which "point® we are, it ought to be obvious
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that single-point-optimization is a bad strategy.

2.2. Compromise Estimators

Let us now consider the case where Xy recerX, is a2 sam~-

pPle from either ?l(x-u) ot rz(x-n).,where !1 and rz satisty

all the constraints of P (see beginning of Section 2.1). We

AR

are now interested in location equivariant estimators which
optimize at two "points”, namely !1 and rz. simultaneously.
This is obviously impossible. However, decision theory ;j
teaches us that estimates of the form t?

Trl' ’2 'd (81' ooo'xn) =

n n
Trla Me(x, +5) + (1=c) I £Ly(x; + 1)} &
- i=1 A=l (2.3)
n n *
Fla Deytxg + ) + Q) T £0x; + 1)} ar

(0 < o <1) are bi-optimal in the sense that they cannot be.
improved in both sampling situtations F, and P, simultane-

ously (see Perguson (1968)).

remarks: (1) We can also write

Trl' rz 'd (31' e s e 'xn) =

iL d 'rl (81 ,...'xn) 'l'rl (21 'aco"u) + :'
-\ (1‘«) 'rz (xl goee 'xn) Trz (xl peese ,Xn) (2. ‘) -.a
» vhere -
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wrk(x1 recerX,) = S

L. .1
n s
$ Ot (x; +r) ar i
1-1 k 1 \T--.
T la @t ( o e } =
o (x; + r) + (1) (x, + r)} Aar ey
{e1 1'% {=1 271
(k =1, 2) and Tp () is defined in (2.1). We therefore can
k
interpret the family of bi-optimal estimators as a weighted ]
mean of the single-situation optimal estimators. Note, how- - ]
ever, that the weights are “adaptive", they depend on the
sanple values. Of course any equivariant estimator can be
represented as a weighted mean of the single-situation -4
.
optimal estimators. What matters here is the simplicity and 3
form of the weights together with their small sample }
optinalit§ property. ;J
(2) It is clear from (2.3) that T?l' p:' 0" T’z and ,”ﬂ
T =T, . .
rlp pz' 1 rl N B
(3) The picture which helps us most in understanding the :T]
compromise estimators is shown in Figure 2.1. - ]
Figure 2.1: plot of the mean-sqare-errors in the two situa-
tions m.s.e. in F, g
s o=
2 compromise estimators ;ﬁ:
?ﬁ minimum possibl ;f}
- in Fy — >m.s.e. in F, o]
- minimum possible in F, oy
::Ej :E'.:]
?- Note that since we only consider location equivariant esti- ?i
2; mators the risk in any given situation does not depend on }éé
i =]
3 !
:
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the parameter value u (see Perguson (1968)). The bi-optimal
or conptonigo estimators are the ones which lie on the con-
vex boundary curve.

(4) A Bayesian interpretation of the estimator (2.3) is pos-
sible. In that framework (o, 1 - o) is a prior distribution
on the set of underlying sampling shapes.

(5) In order to implement (2.3) in an actual application,
the formula (2.4) has some interesting interpretations. Pre-
gibon and Tukey (1980) derive the formulas from the point of
view .7 sampling. This leads to the consideration of dif-

ferent weights w. and w, .
P !2

1l
The choice of the two compromising distributions rl and

rz is of 1mportancé in actual applicétions of the technique.
In many applications it is traditional to consider P o,
the Gaussian shape. The choice of F, is somewhat related to
the choice of the contamination parameter < in Huber’s

model. rz will influence two aspects (see (2.4)):

(i) the "relative weights" v and Vp
1 2
(ii) the "other” optimal estimator Trz.

These two aspects have an interpretation in the theory of
M-estimators. The first is connected with the choice of tun-
ing constants, like k in Hube:‘s'fk-function (P (x) = max(-
k,min(k,x))), and the second with the shape of the -
function. From small sample studies we know for example that

a redescending s-function is advantageous -~ it costs little
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and buys a lot. This is reflected in the theory of comprom-
ise estimators by the choice of F, and by how far Fy is awvay i

from $. '

3. The Asymptotic Behavior of Compromise Estimators 353

N
‘l'l‘l’-
PRI )

In this section we are going to explore what happens to =

compromise estimators (see (2.3) or (2.4)) if we sample from
a distribution G() and let the sample size n grow. We will

&: see that the weights vp and vp usually tend to (0,1) or -

1l 2 o
(1,0), respectively. A compromise estimator for large sample ' '
3 sizes therefore will be close to either the optimal estimate
ﬁ under rl‘ or the optimal estimate under Pz. This is a reason-
:; able behavior since the "information®" about the sampling

situation G() grows as the sample size gets large. The dis- 173

tinction between rl and ?2 is therefore more and more estim- -
able. In a few words then, we can say that compromise esti- 1
mators exhibit an adaptive behavior with the relative

weights wrl and wP2 (see (2.4)) éauging the adaptation. ;;q

3.1. The Asymptotic Behavior of the Relative Weights j;ﬁ

Suppose Xy reserXy is a sample of size n from G(x-n).
We assume that G() 1is symmetric around 0. The relative

weights are defined as

S

Pt T :
KR o, o 0
PP S TN

wrk(x1 ,...,xn) = 2

n o
J igigk(xi +r) dr X
= = (3.1) - -
I la M Exy 40+ (1) JEalxg )} ar




(k = 1 or 2), where the notation is the same as in (2.4).

The following Lemma tteats an "overly nice"™ case.

8 Lemma 3.1
f':j
- Let us assume that both -log f;(x) and -log f,(x) are convex. _
h And let us furthermore -
assume that G() is such that the functions
b
4
E Al(r) = F log £; (x + r) 4G(x) |
. and
A2(r) = J log £, (x + r) aG(x)
F exist for all r and achieve a unique maximum at r=0, 1If -
J log £, (x) aG(x) > I log £,(x) dG(x) (3.2)
it follows that ‘._"-
wtz(xlyocofxn) ~
vtl(xl'.oolxn) > 0 a.s.
pProof: Let xl, xz.... denote a s;quence of iid random vari- ~

ables with common distribution G(x). PFrom (3.l1l) we have

n
"Fz(xl""'xn) hy 1131 £,(X; + 1) ar

= . -

n
Ny 1n1 £,(X, + 1) dr

wtl (XI' e e e ’xn)

Now

. n Ny
'.. I(xlp.--'x ) = I n t(xi + t) dl'.'
- n i=]1
O ¢
L.
;.‘ l n

» = { exp(n( 2 log £(X, + r))) dr

. n 1
e \
N
L :
o -
e e e T e L T e e e s e e ST e
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E‘ T S T T e T T e =
.
\
[ = I exp(n A () dr,
l where
1 n
Ap(r) = o 151 log(£(X; + r))

and £ stands for either fl or £2.

T N Y Y YT YT

Since we are ihte:ested in the 1large sample behavior of
I(xl,....xn) we can use an asymptotic expansion argument to
approximate I().

We know that for large n

I(Xy,..0,X) - Jexpn{a R - 3 A &) (r - ’]?D) ar

TR Y . 7 T TV U

1

- exp(nA (RD) (252 L .3

.o n !
(a**_(’D)

where Rg denotes the point where the (random) function An()

takes its maximal value. Such a single maximum exists

Ll ons s b R e s o St

because of our convexity assunp%}ons.

The theory of asymptotic expansions is treated for example
_in Chapter 6 of Dingle (1973).

If we blend the probability structure which underlies the

sequence xl, xz,... (due to iid sampling from G()) with the

asymptotic approximation (3.3), we can say something about
the behavior of the right hand side in (3.3). Because of the

strong law of large numbers and our assumptions we have . ‘1:?
A (r) -=> A(r) a.s. fpr allr (3.4) o
and from this we can conclude that e
3

. '- . .
1 . ‘ d . e )
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n
so that f
1 log 1(x,,.00X) ==> A(0) = I log £(x) dG(x) a.s. .
where £() denotes either £,() or f£,() (see (3.3)). é
We therefore conclude from ij
I log £,(x) aG(x) > J log £,(x) 4G(x) :
that
s
% 109 Il(xl'ooo'xn) - %’ 109 Iz(xlyq-noxn) n‘l
1 " (x1' o0 e 'xn) :::
8 (o= —— - R
( n) log (w! (xl""'xn)) > constant > 0 a.s. N
where I,(Xy,...,X), I5(X;,...,X ) refer to £() = £,(), £() R
= £,(), respectively. -
Prom this last statement the theorem follows immediately. =
-~
Lemma 3.1 is not good enough for our purposes since the o
assumption about Al(:) is not always satisfied. If for ﬁf
4
example fl = ¢4 and G() has an infinite second moment then -~
Al(r) = ~00 for all r. But we would of course still expect :T

that Lemma 3.1 holds, in fact we would hope for ‘very fast

convergence of the ratio of relative weights.

Lemma 3.2

Let us assume that both -log fl(x) and -log £2(x) are convex,

And let us furthermore

assume that G() is such that the function

-—

e

R

L
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A%(z) = § log £, (x + r) dG(x)
exist for all r and achieves a unique maximum at r=0.

If I log £, (x) dG(x) = -oo then it follows that '

wrz(xl....,xn)

> 0 a.s. .
'rl (xlp ee o 'xn) '.?_-

proof: Use the same argqument as in the proof of Lemma 3.1

and note that

% 109 Il(xlpoao'xn) < any constant a.8. [. -

remarks: (1) The asymptotic expansion (3.3) shows how
closely the maximum likelihood estimator is connected to the
Pitman estimator. Note that A°“(0) is equal to the PFisher L
information if G() = P(), i.e. the sampling situation and
the modelling situation agree. We will see below that the

{ b

maximum 1likelihood estimator Trl is indeed asymptotically

identical to the Pitman estimator. iﬁ?}
(2) It is reasonable to believe .that Lemma 3.1 holds in i;ﬁ
greater generality. The convexity conditions on the log den- [::
sities are probably not needed. ‘

Corollary 3.1 Under the assumptions of the Lemma 3.1 or ;
Lemma 3.2 and if o
3 log £,(x) aG(x) > I log £,(x) dG(x) 3
L.
then the compromise estimator T ((¥0) is asymptoti- L
LIURITA .

cally equivalent to the Pitman estimator T’I. N
proof: Apply the Lemmas tO Formula (2.4) L;;
e

---------------
............
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remarks: (1) Corollary 3.1 states that as the sample size
increases the compromise estimator will pick either one of
the two single-situation-optimal estimates depending on
(3.2).

We therefore expect that

T log £, (x) aG(x) - I log £, (x) dG(x)

£, (x)
= J 1og () a6 (3.5)

is a quantity which decides whether the sampling situation G
is ™“closer®™ to the modelling situation F; or the modelling
situation r,.
The quantity (3.5) is closely related to the Xullback-
Leibler mean information for discrimination (Kullback and
Leibler (1951)). Their formula is -
£, (x)

I(1:2) = § log( W) £, (x) ax,
whgge I(1:2) is the mean information for discrimination per .
observation from sampling situation P
(2) The asymptotic behavior of the compromise estimators
(2.3) does not depend on  (unless (3.5) = 0).
(3) More results about Pitman estimators can be found in
Johns (1979) and Klaassen(l198l). George Easton has proved
the results given in Section 3.1 for the more general case

of unknown scale (Easton (1984)).

3.2. Asymptotics of the Pitman Estimator
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In order to get asymptotic efficiencies for the

r-,— e - - .
AR i sad et I A

compromise estimators we need to know more about the asymp- '
totic behavior of the Pitman estimators T’l and Trz. Port ;ZI
and Stone (1974) provide the information in the case where ff%
the sampling situation and the modelling situation are 3??
identical. In our more general setup we can argue the fol- ;

lowing way:

Jr: exp(nA_(r)) dr : )
where '?f
A(r) =15 log £ix, + 1) .(20) = & F()) "
n LY i - dx * 1
-
If we expand the numerator asymptotically we get ::
=,
rr(‘l'ooopxn) “ -.v.ﬁ
exp(n A (t}) I r expt- JA~° (D) (£ - D )
- Texpm A_(2)) &t 3
oy
T
- n . ",1
- ro . 1
where :8 maximizes An(:). We therefore showed that asymptot- 1
ically the Pitman estimator and the.maximum likelihood esti- fi
msator (- :3) agree. This agreement is good enough to con- 3:7
clude that the asymptotic distributions are the same. Buber '\
-
H (1967) then provides the necessary results. _;;
E 3.3. Huber’s Contamination Model: An Example Eiz
e RS
; To illustrate the use of the theory we developed let us j;?
: 0
: AN
i -
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look at the compromise estimators based on the two modelling

densities
£,(x) = g(x) = —1—-%- oxp (~§x?) |
(2w) -
o
£,(x) = (1-<) g(x) if x| < k 5
1-< K2 :T.‘i]
- -(—-i- exp(S- = k|x|) otherwise =

(wvhere k is such that Z!é!i - 2§(~k) = I—E—:).

The alternative density is of course the least favorable

h (Zr)I :

v e .
e gt

EL choice in the class of distributions

-
.
.

-
-9
~9
.9
Dt

fi; {(1 - ©)3() + «H() : H()symmetric} (see Buber (1964)).

The asymptotic variance of an estimator compromising
‘between these two symmetric situations (see (2.3)) will be
equal to either of the asymptotic variances of the Pitman

estimators

Tr = arithmetic mean
D

or

T, s Pitman estimator for the least
favorable distribution.

If we sample from distribution G() we have for these asymp- =
=

totic variances (n, = J x dG(x)) fﬁ
as. varo(Ty ) = (x = 12 ag(x) :;:;’

¢ G rl G '7"-1

I e tx - ug? a6 (x) 3

as. var,(Ty ) =
¢ ’2 Qf'f'k(x - uc) dG(x))2
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2 dl e

X
e e e e e s A A e e e A et At e e At At e et e et Ta sty s "

'...'..-.. *a, tee, . X AR *
e "“;’L’ :-‘:’;" AOACINE P (:n': 2, -':z'\l.:!.\!‘ l.\l. SQ'L.;"\J' ..n'..t' A .".‘-' PN ‘l.-' ' “'\f\-'\.\\-' .."g"'n'\q'\“\.'-‘-“ '\-‘\J.':P.‘:.L\:!} :!‘:A}i\:;'.:\:l .-1




o . - 16 -

where #, (x) = - £°,(x)/f,(x) = max(-k, min(k.x)). ‘ o

In his 1964 paper Huber shows that the M-estimator ~ 4
based on *k() is asymptotically minimax for sampling situa-

tions chosen from the contamination class. Since Trz has the

same asymptotic behavior as this M-estimator, the same clainm

can be made for Trz. Note, however, that for finite sample

sizes Trz will be superior. The following Proposition

explains the asymptotic behavior of the compromise estima-

tors (see (2.3)).

i Proposition 3.1 Let G(x) = (l-~<)@(x) + <H(x) where H(x) + v
H(-x) =1 for all x°s and H() puts all its mass outside the

interval [-k,k], but is otherwise arbitrary. Purthermore

assume that 0 < « < 0.5. Then . —
: 1
as. var.(compromise estimator) < as. var,(Huber”s minimax g
estimator) )
]
proof: From Lemma 3.1 and Lemma 2.2 we know that -
- 4
I log £, (x) 4G(x) = J log £,(x) dG(x) o
)
= I {109 2 - 3%} a6(x) - § 109 A= ac(x) :
(2m) 2 | (2m) 2 -

k 1 2 oo kz
- Ik -¥x dG(x) - 2 { (T - k|x]) ac(x)

A
s e e .
UL LS R TPy

o0 k2 x2 B
= -log(l-<) + 2 {{klx[ -5 -5} dc (3.6) |
is the quantity which decides about the asymptotic variance . e

of the compromise estimator. Note that we made use of the

. -
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Pl e . .
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o
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LN SN |

symmetry of the sampling distribution G in the derivation of
(3.6). If (3.6) is positive the compromise estimators will ;j
behave asymptotically like the arithmetic mean, otherwise ;;
like the Huber-estimator. All that remains to be considered

therefore is the case where (~.6) 1is positive (or zero)

Sl
At hntnata

because in the other case the assertion of the Proposition

is trivial.

o e
. L
PSRN S

FPirst note that (3.6) can only be positive i{f G has T

finite wvariance. Using our assumptions about G =

L (l-<)$ + <H stated in the Proposition, (3.6) can be written
if as -

00 kz xz
~log (1-<) + 2(1l-<«) { (k|x] - 5 - -2-) g(x) dx +

P PR PY T B

L

kz xz
<3 xix]| - 5 - 5) av(x)

00 2 < 2 -
= =]log(l=-<) - (l-<%) { (x=k)“ ad(x) - II (x=k)“ dH(x) -
e
= -log(l-) - (1-) (kg (k) + #(~k) (1+k?) - Jx? - 32 -
(3.7 -
where oé = I‘xz dH(x) is the variance of the contaminating -

distribution. '
A comparison of the asymptotic variances of the sample ki
mean and Huber”’s estimator is not hard. We have T:
as. varg(sample mean) = (l-<) + < oﬁ (3.8) E;
T @ xn? aGx) 3
as. varg (Huber-estimator) = — o
g f‘k(x) 4G (x)) S
‘_‘1

¥ R R RO SRy LR T e T T e A e e L S AL N A ey j

- . AP PP IS A R ‘- ORI R
B N e R e e e L L T o Lo e et e Lo e e e,
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k 2 0 o
T x®aG(x) + 2 I k“ daG(x)
- - =k k
5‘ F #°x (%) aG(x)) 2
- K 2 2
v (1-) I x° ad(x) + k¢ + 2k* (1l=-<)P(=k)
= = =k % —— (3.9)
] (1-<) 2 ($(k) - $(=K))

In this last formula we have again used all our knowledge

about the sampling situation G().

What remains to be shown is
non-negativeness in (3.7) --> 3.8 < (3.9).

But (3.7) > 0 -=>
<2 < -2 log(l-4) + 2(1-<)kg(k) = 2(1-)§(~k) (1+k?) - <k?

and therefore we have (3.8) = (l=«) + <« a% <

(1-4) + log(yln? + 20— ké (k) - 2(1-)@(-k) (1+k?) -<k?

R\ R M

Using the equation linking <« and k

2 - 28(-x) = 7
we can simplify and get

(3.8) < logigip? + (10K + (1) - 2(2-08(-k) - <k

(3.8) < log(yip1? + (1-4) (1-28(-K))
along the same line of thoughts we can simplify (3.9) to get

(3.9) =

1
(1= (1 - 2&§(-k))° o
Putting all these results together we finally have :ﬁ&

(3.9) 21 + (1-4)32é5l B

o e
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E' This last inequality (3.11) which is egquivalent to .;
ﬂf (3.10) does indeed hold and is left for the reader to check. i
; . 7y
- Proposition 3.1 is now proved for all the cases where SR
;i (3.6) 1is strictly positive. Some care is needed if (3.6) is ;ﬁ
?i zZero. Then the compromise estimator is asymptotically a con- ]
D _

o vex linear combination of Tp_  and rrz, but since the asymp- ::
- 1 e
;E; totic variance of Trl is lower than the asymptotic variance ?}
N
e N
D of T’z the compromise estimator will have an asymptotic D
5 3
. ]
R e A A B N N O R 0 ARG RARS

-19 =
(1-4) (1-28(=k)) + (1-<)3ELKL

2 (1-4) (1-23(-k)) + logiyip)2 > (3.8)

Iv

if only we show that

(1-)4ELK) 5 1og(y1n 2 (3.10)
holds. This last inequality is only true for <« small enough,

e.g. « < 0.5. For such <« values we have

log(Iéz)z £ 3« (0 <<« <0.5)
and (3.10) is therefore proved if we show that

(1-4)52éﬁl > 3«
o R 2 - - e
<> 2k§(-k) > 26(k)

<==>3k§(-k) > g(k) for all .436 < k < oo. (3.11)

Note that the range of <« values from 0 to 0.5 translates

into a range of values for k.
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variance below the asymptotic variance of Trz.

remarks: (1) We have identified a class of sampling situa-
tions G, namely those where (3.6) is positive, for which the
mean is more efficient estimator than Huber’s minimax esti-
mator. It would be of interest to show how big this class is
and also to check whether it contains all sampling situa-
tions for which the sample mean is asymptotically better

than Huber’s minimax estimator.
4. Discussion

This paper deals with estimators which - compromise
between different "shapes®”. This idea, as we have seen, pro-
duces "robust"™ estimators. If we compromise between the
Gaussian and Huber’s least favorable distribution we have a

family of estimators (for different valueés of ) which dom-

inate Huber’s minimax M-estimatOf asymptotically.

Several points need to be clarified, however. The idea of
compromising is different from the usual asymptotic robust-
ness theory as éeveloped by Huber (see BHuber (1964) and
Huber (198l1)). There, the compromising takes place in a
neighborhood of the "central" model, whereas in our approach
the ' different shapes need not be close together. A neigh~
borhood model is in fact .only a first step towards
robust/resistant techniques for small sample sizes. For sam-
ples of size 5 we would advise to compromise between the
Gaussian and something like the slash (= distribution of a

ratio of a Gaussian over an independent uniform) rather than

WY T

.........




....................
........................................

ORI

DN

using the only moderately tailed least favorable distribu-

tion.

'
Vv

The intention of this paper is not to show that we should

:EZ use a compromise between the Gaussian and the least favor- ?i
.I able distribution, but rather to let people know of the mer- f‘

its of compromise estimators in a language which many sta-

tisticians are used to, namely asymptotics.

Results found through small sample experiments are of
;if greater importance. It is clear for example that the situa-
:if tions (or shapes) we compromise ought to change with the
Fr sample size. The amount of "information®” in the sample grows
&i with the sample size. Not only are we able to estimate
' "parameters” with 1less variability, we also gain insight
ii into the underlying shape. Compromise estimators use this

knowledge in an optimal way and with our choice of the

shapes we can fine-tune the progedure. Important choices
have to be made in that respect and more (probably experi-
mental) research for small sample sizes is needed. Subject

. matter knowledgc might prove useful in this connection.

The extension of Pitman’s ideas to more than one shape

ﬁ; provides us with a tool to find meaningful small sample

methods of the robust/resistant kind. In order to make the

asymptotics simple we did not deal with the scale parameter.

A In actual applications the inclusion of this additional
;E parameter is, however, no problem (see Bell and Morgenthaler 'i

(1981) for an example).

* -
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